Quaternary Golay sequence pairs I: even length

نویسندگان

  • Richard G. Gibson
  • Jonathan Jedwab
چکیده

The origin of all 4-phase Golay sequences and Golay sequence pairs of even length at most 26 is explained. The principal techniques are the three-stage construction of Fiedler, Jedwab and Parker [FJP08] involving multi-dimensional Golay arrays, and a “sum-difference” construction that modifies a result due to Eliahou, Kervaire and Saffari [EKS91]. The existence of 4-phase seed pairs of lengths 3, 5, 11, and 13 is assumed; their origin is considered in [GJ].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternary Golay sequence pairs II: odd length

A 4-phase Golay sequence pair of length s ≡ 5 (mod 8) is constructed from a Barker sequence of the same length whose even-indexed elements are prescribed. This explains the origin of the 4-phase Golay seed pairs of length 5 and 13. The construction cannot produce new 4-phase Golay sequence pairs, because there are no Barker sequences of odd length greater than 13. A partial converse to the cons...

متن کامل

A construction of binary Golay sequence pairs from odd-length Barker sequences

Binary Golay sequence pairs exist for lengths 2, 10 and 26 and, by Turyn’s product construction, for all lengths of the form 21026 where a, b, c are non-negative integers. Computer search has shown that all inequivalent binary Golay sequence pairs of length less than 100 can be constructed from five “seed” pairs, of length 2, 10, 10, 20 and 26. We give the first complete explanation of the orig...

متن کامل

A new source of seed pairs for Golay sequences of length 2m

In 2007 Jedwab and Parker proposed [10] that the natural viewpoint for a Golay complementary sequence is as a projection of a multi-dimensional Golay array. In 2008 Fiedler, Jedwab and Parker [5] used this viewpoint to show how to construct and enumerate all known 2-phase Golay sequences of length 2, starting from two sources of Golay seed pairs. The first source of seed pairs is the trivial Go...

متن کامل

On the Perfect Cyclically Conjugated Even and Odd Periodic Autocorrelation Properties of Quaternary Golay Sequences

A sequence is called perfect if its autocorrelation function is a delta function. In this paper, we give a new definition of autocorrelation function: generalized even and odd periodic autocorrelation, and generalized even and odd periodic cyclically conjugated autocorrelation. In particular, we study a special case of autocorrelation function called cyclically conjugated autocorrelation functi...

متن کامل

Negaperiodic Golay pairs and Hadamard matrices

Apart from the ordinary and the periodic Golay pairs, we define also the negaperiodic Golay pairs. (They occurred first, under a different name, in a paper of Ito.) If a Hadamard matrix is also a Toeplitz matrix, we show that it must be either cyclic or negacyclic. We investigate the construction of Hadamard (and weighing matrices) from two negacyclic blocks (2N-type). The Hadamard matrices of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2011